登录/ 注册 服务热线:0755-2839 6593

首页 > 新闻资讯 > 行业资讯

PCB 布局挑战——改进您的开关模式电源设计

发布时间:2023/6/14

这里发挥作用的机制和风险是不需要的能量以电容 (dv/dt) 和电感 (di/dt) 耦合到系统的其他部分,或者更糟的是,以辐射和传导发射的形式耦合到系统之外。

隐藏的 PCB 布局威胁——PCB 耦合
SMPS 相关的 EMC 原则通常要求设计人员密切注意 SMPS 布局中的两个耦合因素,如图 1 所示: 
具有高 dv/dt 的电压开关节点
热电流回路,其中包含子系统中的 di/dt

 


1.显示降压转换器 di/dt dv/dt 位置的示意图。图片(修改后)由Analog Devices提供

这里发挥作用的机制和风险是不需要的能量以电容 (dv/dt) 和电感 (di/dt) 耦合到系统的其他部分,或者更糟的是,以辐射和传导发射的形式耦合到系统之外。 
PCB 设计后期制作审查
深入研究该项目,我们将检查LM22678 5A 转换器(图 2)的 PCB 布局,其中V输入为 12 V(未显示),V输出为 5 V。这是一个非同步降压转换器,使用用于其低侧开关元件的 B130L-13-F 肖特基二极管(是的,在您检查之前 - 系统消耗的电流小于二极管的 1 A 额定值!  )。

 


2.非同步 LM22678 降压转换器 12 V 5 V 的原理图。

限度地减少电容和电感耦合通常并不复杂,但很容易被忽视,从而导致排放测试失败和上市延迟。在下面的图 3 中,我们看到了用于非同步降压稳压器的 TO-263 封装布局,其中标识了电压节点(红色轮廓)和热电流环路(黄色轮廓)。 

 


3.具有低侧功率二极管的非同步降压稳压器设计。

为清楚起见,电路板上的铜填充已被隐藏。总的来说,这种设计存在三个明显的问题: 
di/dt 环路比需要的大得多
没有过孔连接 C IN C OUTGND 节点(它们被地面浇注覆盖)
交换节点可以更小
这些设计选择的终效果意味着电流环路没有得到很好的控制,并且由于平面之间没有过孔,电流没有明确的路径返回源头。  
对于 EMC——(电气)沉默是金
应用从 Hubing 博士的讨论中收集的原则,可以在下面的图 4 中看到改进后的布局。它具有优化的电压节点、更小的热环路以及通过访问每个无源组件的第 2 层参考平面。此外,初级 C OUT电容器也相对于原始设计旋转了 90 度,从而降低了输出轨上的噪声风险。